
Soil P.O. Box 2890 
Conservation 
Service 

Washington, D.C. 
20013 

September 30, 1985 

TECHNICAL RELEASE NO. 66 (THIRD EDITION) 
210-VI 

SUBJECT: ENG - SIMPLIFIED DAM-BREACH ROUTING PROCEDURE 

Purpose. To distribute the second revision of Technical Release No. 66. 

Effective Date. Effective when received. 

This revision establishes a common theoretical basis for the graphical and the 
numerical solutions of the dam-breach problem by the simplified Attenuation- 
Kinematic flood routing method. Thus, the mathematical models for the 
curvilinear and triangular hydrographs used by the method now appear in the 
text rather than the appendix. Also, detailed procedures for solving the 
models by either approach are included. 

Families of curves representing the equations of the two mathematical models 
have replaced the single parameter curves of ES-212; thus, the user may read 
solution values directly from these graphs, thereby eliminating the need for 
adjustments. As another addition, this revision includes a method for 
estimating the arrival time of the peak discharge at points downstream of the 
dam. 

Appendix A of the revision provides the documentation for the complete 
Attenuation-Kinematic flood routing method and dwells in greater detail, than 
before, on the theoretical and practical aspects of the routing method. 

A series of evaluation tests of the simplified procedure revealed a systematic 
trend towards excessive attenuation of the routed peak discharge with 
distance. This evaluation suggests that the application of*the procedure be 
limited to situations in which the value of the parameter k is less than one. 

PAUL M. HOWARD 
Deputy Chief 

for Technology 

DIST: TR-66 

The Soil Conservation Service 



U.S. DEPARTMENT OF AGRICULTURE 
Soil Conrervation Service 

DISTRIBUTION LIST - m-66 

STATES I NO. COPIES I 
NATIONAL HEADQUARTERS 

Missouri Proiact Develoommt a Mhwnwue 

Montene 30 Doputv Chief for Technolow 

Nebrmke 5 Ecological Scirnca 

NOV8d~ 10 Economics 4% Social Sciences 

New Hempshire 

Naw Jenw . . _ . .  _____~ 

New hhrica 

I  -- I  

23 I Engineering 

I l< Intrrnetionel Activitia 
Ad 

I --an. 1 Othm: 

Pennsylvania 

Puerto Rico 

Rhode Island 

South Carolina I 1 I 

South Dakota 

Tennessee I 33 
Texm I 100 I 
Utah 

Vermont 

Virginie 

Wnhington 

West Virginia 

Wisconsin 

Wyoming 

NTC’S 

Lincoln, Nob. 

Portlend, Ore. 

Chester, Pe. 

Ft. Worth, Tex. 

10 
15 
25 
25 
12 
15 
6 

11 
25 
25 
23 

SIGNATURE (O~cfOr requerfiw disnfbutton) 

NO. COPIES 

0 



TECHNICAL RELEASE NO. 66 
(THIRD EDITION) 

SIMPLIFIED DAM-BREACH ROUTING PROCEDURE 

U. S. DEPARTMENT OF AGRICULTURE 

SOIL CONSERVATION SERVICE 

ENGINEERING DIVISION 

DESIGN UNIT 

SEPTEMBER 1985 





i 

Preface 

l 

Recent dam failures have underscored the need to be able to predict flood 

stages downstream from breached dams. This technical release presents a 

simplified procedure for making these predictions. These predictions would 

supply the information needed to evaluate the safety hazards of existing and 

planned dams if they should breach, to assist planning for development in 

downstream areas, and to help civil defense and rescue agencies prepare for 

dam failures. 

The Soil Conservation Service, in its mission of soil and water conservation, 

examines a large number of potential dam sites for landowners and project 

sponsors. Generally, these dams are of small height and storage; thus, a 

potential dam breach would have a small impact on the flood plain areas beyond 

a relatively short distance downstream (often five miles or less). Therefore, 

a breach routing method is needed that is easy to use and provides quick and 

accurate information. 

In developing this technical release, many routing methods were considered. 

The selected Att-Kin procedure best meets the SCS need. 

The purpose of this revision is to establish a common theoretical basis for 

both the graphical and numerical solutions of the dam-breach problem. Thus, 

the mathematical models for the curvilinear and triangular hydrographs used by 

the method now appear in the text rather than the appendix. Also, detailed 

procedures for solving the models by either approach are included. 

Families of curves representing the equations of the two mathematical models 

have replaced the indirect, graphical procedure which used the two single 

parameter curves on ES-212 and an empirical numerical technique. Another 

addition to this revision is a method for estimating the arrival time of the 

peak discharge at points downstream of the dam. 

This revision also clarifies the theoretical and practical basis of the parent 

Att-Kin routing method. The presentation of the Att-Kin method in Appendix A 

is preceded by a brief presentation of major concepts underlying its formula- 

tion, as well as, a discussion of similarities and departures from other 
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ii 

simplified flood routing methods. These provide a framework for a rational 

evaluation of the Att-Kin method through comparison to conventional alterna- 
tives and, by extension, for an assessment of the advantages and the drawbacks 

in its application. 

John A. Brevard and Fred D. Theurer prepared the original technical release. 
Dr. Theurer with the assistance of George H. Comer developed the routing 

procedure. 

George Kalkanis, Civil Engineer, Design Unit, Engineering Division prepared 
this revision. William H, Merkel, Hydraulic Engineer, Hydrology Unit, 

Engineering Division consulted with Dr. Kalkanis during its preparation. 
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Nomenclature 

A z 

d0 

g 

k 

kO 

ks 

Lj 
L j-l 

m 

m 
S 

n 

N 

Q 

Qi 

Ql 

Ql,l 

Ql,, 

flow area, ft2 

flow area associated with discharge Q, at section j, ft2 

flow area associated with discharge Qi at section j+l, ft2 

dQ/dA, speed of propagation of discharge Q, ft/sec 

coefficient of proportionality 

depth of flow, ft 

maximum depth of flow associated with discharge Qo, ft 

acceleration of gravity, ft/sec2 

coefficient in the discharge-valley storage relationship 

coefficient in the discharge-flow area relationship 

coefficient in the discharge-valley storage relationship 

used in the "storage" routing submodel 

length of subreach j, ft 

length of subreach j-l, ft 

exponent in the discharge-valley storage relationship 

exponent in the discharge-valley storage relationship used 

in the "storage" routing submodel 

E when N is an even number and N+l 
2 -when N is odd 2 

number of paired values of Qi, g 
Lj 

discharge, cfs 

a particular discharge in an array of discharges, cfs 

instantaneous outflow discharge from a reach, cfs 

instantaneous outflow discharge from a reach at time tl, cfs 

instantaneous outflow discharge from a reach at time t 2' cfs 
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Ql 

Ql,i 

Q2 

Q2,l 

Q2,2 

q2 

QI 
Qm ax 

Qo 
Q* 

r 

S 

S 
g 

S 
W 

S I 3 

= 

E 

= 

= 

= 

E 

= 

f 

= 

f 

E 

3 

E 

= 
'i,j-1 C 

'i,d,j ' 

Q +Q 1,l 1,2 
2 , mean outflow discharge from a reach during 

the time interval At = t2 - tl, Cfs 

outflow discharge from the reach at time t 1 i determined 
, 

by the storage submodel, as well as, at times tl i + 6ti and 
9 

?,i + 6tl i determined by the Att-Kin model, cfs 
, 

instantaneous inflow discharge into a reach, cfs . . 

instantaneous inflow discharge into a reach at time tl, cfs 

instantaneous inflow discharge into a reach at time t2, cfs 
Q +Q 2,l 2,2 

2 , mean inflow discharge into a reach during the 

time interval At = t2 - tl, cfs 

maximum discharge of inflow hydrograph, cfs 

maximum discharge of breach hydrograph, cfs 

maximum outflow discharge from a reach, cfs 

QO 

Q, 
hydraulic radius, ft 

valley storage, ft3 

longitudinal slope of floodway floor 

valley storage in subreach j associated with outflow dis- 

charge Qi, ft3 

valley storage in subreach j-l associated with outflow dis- 

charge Qi, ft3 

off-channel valley storage between section j and j+l 

associated with discharge Q,, ft3 

valley storage in the reach associated with QI through the 

discharge-storage relationship used by the Att-Kin routing 

model, ft3 
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vii 

sn 
3 

sl,i = 

Sl,i-1 - 

S(t) z 

t E 

t1 : 

t2 z 

t1 - 

to E 

s z 

%,i-1 = 

t1,i 3 

t* = 

* 
to = 

V = 

valley storage in the reach satisfying continuity at time 

to , ft3 

valley storage in the reach at time to associated with Q 
0 

from discharge-valley storage relationship, ft3 

valley storage in the reach at time t 

storage routing submodel, ft3 

1 
, 
i determined by the 

valley storage in the reach at time tl i-1 determined by 

the storage routing submodel, ft3 
9 

valley storage in the reach at time t and associated with 

Q(t) through the discharge-storage relationship used by the 

storage routing submodel, ft3 

time 

time at the beginning of routing time interval 

time at the end of routing time interval 

time to peak inflow discharge QI into the reach 

time to peak outflow discharge Q, from the reach 

time to peak outflow discharge Q, from the reach determined 

by the storage routing submodel 

time at the beginning of computational interval in the 

storage routing submodel 

time at the end of computational interval in the storage 

routing submodel 
QI 

t vI 

QI t- 
o vI 

4 
A' average flow velocity through any valley cross-section, 
ftlsec 
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"d 

"I 

"0 

V 
S 

"t 

0 

5 

&to 

6tl,i 

valley storage in subreach attributed to the kinematic 

distortion of the outflow hydrograph produced by the storage 

routing submodel, ft3 

total volume of water under the breach hydrograph, i.e., 

excluding the volume of base flow, ft3 

volume of net outflow from the reach to time t ft 3 
0’ 

valley storage in subreach associated with Q and t 
O3 s determined by the storage routing submodel, ft 

volume of water inflow into subreach during the time 

interval to - ts9 ft 3 

angle of the tangent through the point[ Q, A I on the curve 

representing the discharge-flow area relationship in a given 

valley cross-section, = tan %> 

time lag of outflow discharge Ql i due to kinematic 
, 

distortion 

time lag of outflow discharge Q, i due to kinematic 
, 

translation 

total time lag for discharge Q, i between hydrographs 
, 

routed by the storage submodel and the Att-Kin model 
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TECHNICAL RELEASE 

NUMBER 66 (THIRD EDITION) 

SIMPLIFIED DAM-BREACH ROUTING PROCEDURE 

INTRODUCTION 

This technical release presents a method for estimating key character- 

istics of the floodwave generated by the sudden breaching of a dam. These 

characteristics are the peak flood flow Q, at a predefined location in the 

path of the floodwave, the associated maximum depth of flow do, and the time 

lapse to between the breaching of the dam and the occurrence of the above two 

extremes. The expressions for these three dependent variables, which are 

furnished by the solution of an empirical mathematical model discussed later, 

are functions of the independent variable representing distance from the dam, 

as well as, certain parameters defining the breach hydrograph and describing 

pertinent hydraulic characteristics of the valley downstream. These para- 

meters are determined as follows: 

BREACH HYDROGRAPH 

The breach hydrograph, as all hydrographs, is completely defined by its 

peak discharge Qmax, its total volume VI, and its shape. 

Regarding shape, the method postulates that the breach hydrograph is a contin- 

uous decaying function of time of either triangular or curvilinear shape. 

More precisely, the decay in the latter case is exponential. The rule of 

selecting the applicable shape in a given situation is based on the antici- 

pated flow regime in the valley subreach immediately below the dam. Thus, if 

the expected flow in the subreach is supercritical, the applicable shape is 

triangular; otherwise, the appropriate hydrograph shape is curvilinear. 
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The reasoning behind the rule is that, if the flow in the reach immediately 

below the breached dam is subcritical, the tailwater will submerge the breach 

at some outflow, thereby retarding the total flow from the breach. Then, the 

breach hydrograph will assume a curvilinear shape. Conversely, if the flow is 

supercritical, the tailwater will be lower, thereby impeding the flow less 

than before. Then, the shape of the hydrograph will be triangular. 

Q max may be determined by methods that are process based, using scientific 

procedures for erosion, sediment transport, and hydraulics, or based on empir- 

ical relationships derived from analysis of recorded actual dam failure 

data. The minimum required peak breach discharge is established by SCS 

policy. 

Figure 8 shows a plot of paired data of maximum breach discharge and depth of 

water for recorded dam failures. Also shown is a line almost enveloping the 

data which, if used, would predict a rather conservative maximum breach dis- 

charge. 

The total volume VI is the sum of the volume of water being stored behind the 

dam at the time of breaching and of the part of the storm hydrograph still 

approaching the reservoir from upstream. Thus, in considering the event of 

dam breaching without storm inflow, the second component of VI is set equal to 

zero. 

HYDRAULICS 

The second key component of the simplified Att-Kin method consists of hydrau- 

lic characteristics of the valley downstream of the dam. For a given valley 

reach a single-valued relation of discharge and valley storage must be deter- 

mined. This relation may be determined from stream gage data or water surface 

profiles obtained from unsteady, steady non-uniform, or steady uniform flow 

computations. Of course, the accuracy of the discharge-storage relation 

depends on the method used and the level of detail of the cross-section data 

collected. 
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In order to determine the discharge-storage relation for a reach, cross- 

section data, roughness coefficients, and reach lengths are needed. The 

detail of this data gathering and analysis is dependent on the purpose for 

doing the breach routing and on such factors as variation of valley cross- 

section (and slope) and floodplain land use. Methods for computing water 

surface profiles for valley cross-sections are contained in many hydraulics 

texts and also in SCS TR-61 and SCS NEH Section 4. 

c 

Profiles should be computed for a range of discharges up to the maximum dis- 

charge expected from the breach. 

The discharge-valley storage relation should reflect total valley storage 

between cross sections for specific discharges. For a steady discharge, the 

associated valley storage is the main valley storage and the off-channel or 

"dead" valley storage between cross-sections. The off-channel valley storage 

is any valley storage not accounted for in the flow area determinations, for 

example, draws and channels upstream of confluences. 

Following the development of the rating curves at key valley cross-sections, 

the total valley reach is divided into subreaches. Each subreach is bounded 

by the valley cross-section at the dam and by one of the remaining downstream 

cross-sections. Reach 1 is bounded by cross-sections 1 and 2, reach 2 by 

cross-sections 1 and 3,.., and reach nl -1 by cross-sections 1 and nl; nl being 

the number of cross-sections. 

The discharge-valley storage values defining the discharge-valley storage 

relation for each subreach must be determined. The equation determining 

valley storage Si,j is, 

(A .+ A 
s. =s + is3 id+1) bj i,j-1 2 

(Lj - Ljal),+ si d j (1) 
, , 

in which, 

A. 
l,j 

: flow-area associated with discharge Q, at 

section j, ft2 

A. l,j+l 
z flow area associated with discharge Qi at 

section j+l, ft2 
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s* = 
bj 

si,j-l 5 

Lj 
z 

Lj-1 ' 

si,d,j - 

Qi 

By definition, 

S i,O 

= 

= L1 

valley storage in subreach j associated with 

discharge Qi, ft3 

valley storage in subreach j-l associated with 

discharge Qi, ft3 

length of subreach j, ft 

length of subreach j-l, ft 

off-channel storage between section j and j+l 

associated with discharge Qi, ft3 

a particular discharge in an array of discharges, 

cfs 

= 0 for all i's 

The discharge-valley storage relation for a subreach is represented by the 

equation 

Qi =kj(S . i, j)mJ 

in which, 

j E 1 to nl-l I 
I 

i - 1 to N 

n1 G number of valley cross-sections 

N E number of water surface profiles 

Ordinarily, the value of nl is predetermined, but the user selects the value 

of N, preferably, an even number and as large as convenient. 

Taking the logarithm of both sides of equation (2) produces the equation, 

log Q, = log kj + mj log(S 
id (3) 

from which the values of k. 
J 

and mj are determined through application of a 

linear regression technique on paired values of log (Qi) and log (Si,j> for 
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Q = kSm = k(AL)m = k L" Am 

5 

subreach j. The most prominent and widely used technique for the purpose is 

the method of "least squares", whose coded versions may be found in most ADP 

libraries. However, for sake of completeness, the rather computationally 

simple "method of averages" (Smith, Gale, and Neelley 1956) is given in 

Appendix B. 

An observation of practical significance is that, in the particular case of 

uniform flow, the equation relating the valley storage to the valley cross- 

section is, 

S=AL for all i's and j's (4) 

where 

A E cross-section flow area, ft2 

L : reach length, ft 

It follows that 

(5) 

defining 

k0 
= k Lm 

and substituting into equation (5) and from equation (4) 

Q = k, Am = k Sm 

Lrn 
(5A) 

The values of k, and m in equation (5A), which for uniform flow (and no dead 

storage) is a substitute for equation (2), can be determined directly from 

paired values of Q and A computed by any reputable friction formula. 
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THE MATHEMATICAL MODEL 

A feature shared by most simplified methods solving the dam breach problem is 

that the breach hydrograph, which normally is a boundary condition, consti- 

tutes an integral part of the mathematical model simulating response. Thus, 

the recognition of two distinct shapes of the breach hydrograph imposes the 

necessity of two distinct mathematical models. The selection of the applica- 

ble hydrograph shape becomes, in essence, the criterion for selecting the 

applicable mathematical model. 

The development of the model evolved through a process of successive modifica- 

tions and adjustments of a set of equations. The approach was identical for 

both curvilinear and triangular hydrograph models so, in the discussion that 

follows, the term "model" is representative of both. 

The process consisted of fitting pertinent dam breach data, measured or 

computed, to mathematical expressions containing the variables defined on the 

following pages; and using judicious adjustments, until satisfactory levels of 

closeness were achieved. The measured data used in the process was from 

actual dam-breach events and physical model studies (Theurer and Comer 

1979). The computed data was generated by combining results from two mathe- 

matical flood routing models; one was hydraulic, based on the method of char- 

acteristics (Theurer 1975), and the other was hydrologic, based on the 

Attenuation-Kinematic method, or in brief, Att-Kin method. The Att-Kin 

method, which shares certain features with the simplified Att-Kin method, is 

described in Appendix A. 

A major shared feature is the steady flow assumption underlying the derivation 

of equation (2) in the simplified Att-Kin method and equation (A-7) in the 

Att-Kin method. This assumption, though essential to its formulation, is not 

peculiar to the Att-Kin method. It is used by practically all hydrologic 

methods of routing. 

Had the development of the mathematical model been purely empirical, the 

process of determining the form of both independent relationships would have 
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been wholly stat i stical. However, in the approach used, one relationship was 

predefined during the initial stage of development. The predefined form of 

the relationship was, 

tO 
= m [(SI - So)/(QI - Qo)l (6) 

in which, 

. 
QI z peak inflow discharge 

Q. - peak outflow discharge from the subreach 
= 

to - time to peak outflow discharge Q, 

SI - valley storage in the subreach associated with QI 

SO 
E valley storage in the subreach associated with Q, 

Equation (6) is a modified version of a characteristic equation of the Att-Kin 

model. It appears in Appendix A as equation (A-21). The two-fold modifica- 

tion involved the elimination of the term, tI, for hydrographs rising suddenly 

to the peak and multiplication of the bracket on the right-hand side of the 

equation by m. The justification for the latter was the observation that, 

under the dry-bed initial condition prescribed by the method, the celerity of 

the flood wave at the leading tip cannot exceed the mean flow velocity in the 

valley reach. 

Initially, equation (6) was common to both hydrograph shapes. A second equa- 

tion for each shape was developed empirically from data. In the process, 

equation (6) underwent additional adjustments and, eventually, assumed a 

different form for each submodel. The final versions are represented below in 

dimensionless notation by equation (8) for the curvilinear hydrograph and 

equation (11) for the triangular. 

Curvilinear Hydrograph 

Qi = QIe-t* 

t* 
0 

=m[ Q*-‘-11 

* 

(7) 

(8) 

(9) k* = {[l - e -to ] + $ [ Q*2 ln Q*]}m { i* 
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Triangular Hydrograph 

* 

Qi = QI[ l-$1 for t* < 2 (1W 

Qi = 0 for t* > 2 (lOBI 

1 -- 
t* = 

0 
m (1 + Q*) [Q* m - I] (11) * 

k* = { t,: [ 1 -it:,] -Q *2 (1 - Q*)jm { 'A } 
Q 

for tz < 2 (12N 

k* =[l-Q *2 ( 1 - Q*)lm [ 11 for tz > 2 Cl=) 
Q 

and in which by definition, 

= Q max 

Q 
Q* +? 

I 

* to QI to E- vI 

k* 3 5 ( v jrn 
I 

Since for a given j, equation (2) becomes Q, = k SIm 

QI 
After substitution of k for SIm, equation (16) becomes, 

k* 
QI 

k V; 

(13) 

(15A) 

(16) 

(1W 
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The first equation in either set, i.e., equation (7) and equation (lo), 

describes the breach hydrograph associated with the model. These equations 

are not used in the solution because the pertinent information they contain 

has already been incorporated in the remaining equations of the associated 

model. Equations (8) and (9) form the mathematical model for the curvilinear 

shape hydrograph and equations (11) and (12A) or (l2B) for the triangular 

shape hydrograph. Each model consists of a set of two independent equations 
* * * 

containing four unknowns; k , t o, Q , and m. For each model, if two of the 

variables are predetermined, the other two may be determined. Normally, m is 

determined from the discharge-storage relation, equation (2), and k* is deter- 

mined from equation (16A), then t* 
0 

and Q* may be solved for directly. 

. 

In summary, the breach routing solution consists of solving equation (2), 

equation (16A), and either equations (8) and (9) or equations (11) and (12A) 

or (12B). 

September 1985 
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An important observation is that while the time to and the discharge Q appear 
0 

explicitly in the expressions for the nondimensional parameters, the distance 

L does not. In the general case of nonuniform flow represented by equation 

(16), the value of L, as indicated clearly by equations (1) and (2), is 

reflected indirectly in the value of SI* 

The only time L appears explicitly is when the flow is uniform; for then, 

% = AI L (17) 

A z 
I flow area associated with peak inflow discharge QI 

Substituting the right-hand side of equation (17) for SI in equation (16) 

gives, 

(18) 

Since in a given situation m, AI, and VI are fixed variables, the dimension- 

less parameter k* is a simple exponential function of L. 
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The final observation is that do, the maximum depth of inundation, does not 

appear in the mathematical model because it is not determined directly by 

it. Its value is determined separately from the value of Q,. The determina- 

tion is done by means of the rating curve at the target cross-section devel- 

oped, as mentioned earlier, from water surface profile computations. 

APPLICATION OF THE SIMPLIFIED ATT-KIN METHOD 

Empirical testing of the method for accuracy of predictions is hampered by the 

absence of reliable data from actual dam failures. So, the benchmark informa- 

tion has to be generated, artificially, from solutions of more sophisticated 

mathematical models. The problem is that practically all such models are 

incompatible with the simplified Att-Kin model. For instance, the NWS DAMBRK 

model, perhaps the most efficient in its class, will not admit breach hydro- 

graphs exhibiting an instantaneous rise to the peak, a built-in characteristic 

of the simplified Att-Kin model. Moreover, it cannot be solved for an initial 

dry-bed condition, another characteristic peculiar to that model. 

The foregoing notwithstanding, the accuracy of the method has been evaluated 

through a comparison test of its results with data generated under slightly 

modified conditions by the NWS DAMBRK model. Even though limited in scope, 

the test confirmed the predicted tendency of the simplified Att-Kin model, 

consistent with the dry-bed assumption, of a higher than normal rate of atten- 

uation of the peak discharge with distance. Confirmation of suspected ques- 

tionable behavior suggested limiting the method's application to situations in 
* 

which the value of the parameter k is smaller than or equal to 1.0. In the 

domain beyond that limit, the method may be used with caution, that is, with 

the understanding that predicted values are good only for qualitative assess- 

ments of potential hazards. 

Where an obstruction, such as a road embankment, stores a significant portion 

of the flow from the dam, the obstruction controls the flow downstream; there- 

fore, the routing procedure is not applicable downstream of the obstruction. 
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Problem Statement 

In the simplified Att-Kin procedure, the storage-discharge curve described 

11 

by 

the calculated m and k values is normally used to represent the momentum 

equation. However, where the m value is greater than three or less than one, 

the storage-discharge relation is not a good substitution for the momentum 

equation. Values of m outside of the range 1 < m < 3 represent conditions 

which are physically unrealistic for open channel flow. Analysis shows that 

for m < 1, pressure flow exists and for m = 3, laminar flow exists. Thus, an 

m value less than one or greater than three may be a good representation of 

the storage-discharge curve, but it is not a good representation of the momen- 

tum equation. 

Thus, where the m value associated with the storage-discharge relation is 

outside of the range of one to three, other routing procedures should be 

used. The applicable range for m values is shown in figures 4 through 7. 

PROBLEM STATEMENT AND PROCEDURE 

Given: Q 
max' vI' 

geometric and roughness data for valley cross-sections, 

and associated distances from the dam; 

Find : Q,, do, and to at the valley cross-section located at distance 

L downstream from the dam. 

Procedure 

1. Use given data to develop depth of flow versus area curves for all 

cross-sections. 

2. Perform water surface profile computations for an array of discharge8 

containing Qmax, under the assumptions of subcritical flow conditions in 

the valley and uniform flow at its downstream end section. If the compu- 
tation terminates normally, go to next step. If not, repeat it starting 
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at the upstream end section with flow at critical depth. If this termina- 

tion is normal, go to next step. If not, terminate the computation; the 

given set of data is not manageable by the method. 

3. Use data computed in step 2 to develop a table relating discharge with 

depth of flow and area at each cross-section. 

4. Determine shape of the breach hydrograph. 

Use data for the valley cross-section immediately downstream from the dam, 

generated in the steps above, to determine flow area A and top width T 

associated with Qmax* 

Compute the square of the associated critical flow discharge at that 

cross-section from, 

g A3 
Q2 =y 

c,d 

The shape of the breach hydrograph is triangular if, 

Q J!!%> 1 
Q c,d 

Otherwise, the shape of the hydrograph is curvilinear. 

5. Use the data from steps 1 and 3 to generate area-discharge relationships 

and use them next to compute the associated valley storage for each 

subreach from equation (1). 

6. Compute values of k and m for each valley reach, using paired sets of Q 

and S data from step 5 and the procedure in Appendix B or equivalent 

alternatives. 

7. Set QI = $ax and compute k* from equation (16~). 

a. Use the mathematical model for the hydrograph shape selected in step 4 to 
* 

compute to and Q*. 
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Solve the applicable mathematical model graphically using the curves on 

figures 4 through 7, pages 31 to 37. Figures 4 and 5 pertain to curvilin- 

ear breach hydrographs and figures 6 and 7 to triangular ones. 

In a given situation, the shape of the hydrograph and the values of m and 

k* are known. The applicable figure is then entered with the value of k*, 

and a line is drawn vertically upward. The coordinates on the Q*, to* 

plane of the point of intersection of that line with the curve labeled m 

are the solution values of the two dependent variables. 

An alternative to the graphical method outlined above is to solve the 

applicable mathematical model numerically. Since neither model affords a 

direct solution in terms of k*, an iterative technique has to be used. 

The most efficient for the purpose is one iterating about the values of Q* 
* 

until the value of k computed by the model is about equal to that from 

step 7. 

9. Compute the maximum flood discharge Q, at the target cross-section from, 

Q, = Q* Q, 

10. Determine do, maximum depth of flooding at the target cross-section, from 

the rating curve developed in step 3. 

11. Compute the time to peak outflow Q, from, 

t * "I =t 
0 O QI 
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EXAMPLE 1 

Given: 

Qm ax = 35,000 cfs 

Reservoir storage volume is 450 ac-ft 

No storm inflow 

The depth of flow versus discharge curves in figure 1 

The depth of flow versus flow area curves in figure 2 

The two valley cross-sections below; 

section 1; at the dam 

section 2; 2,500 feet downstream of dam 

Determine: 

The maximum depth of flow at valley cross-section 2 and the associated 

time of occurrence. 

Solution: 

The information normally generated in steps 1 through 3 of the procedure is 

given. The results from step 1 are shown on figure 2, and those from steps 2 

and 3 are shown on figure 1. Thus, the solution begins with step 4 of the 

procedure. 

4. Determine the shape of the breach hydrograph: 

a. Determine the depth of flow and the cross-section area at section 1 

for Qmax = 35,000 cfs, assuming the dam does not exist. 

From figure 1 and for section 1, read the depth of flow, 

dl = 24.5 ft. 

A1 = 6,850 ft2. 

From figure 2 and for dl = 24.5 ft, read 
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15 

b. Determine the critical discharge, Q, d, for the depth of flow at 
, 

section 1. 

Assuming for this example that T = 600 ft when dl = 24.5 ft, 

3 

Qf,d = -+-- = g(6$;o' 
3 

= 1.72 x lOlo ft6/ sec2 

Q c,d = 131,000 cfs 

Then, 

Qnl ax= 35,000 
= 0.27 < 1 

Q c,d 131,000 

Thus, the flow immediately downstream from the dam is subcritical, 

and the breach hydrograph is curvilinear. 

5. Determine the flow areas at each valley cross-section and the valley 

storage in each valley subreach for the number of discharges necessary to 

define adequately the discharge versus valley storage relationship. 

Sample calculations are shown for 0.25 sax, (Q = 8,750 cfs). 

From figure 1 and for Q = 8,750 cfs, read dl = 16.5 ft. 

From figure 2 and for dl = 16.5 ft, read Al = 2,500 ft2a 

b. Section 2; i = 1, J = 1 

From figure 1 and for Q = 8,750 cfs, read d 
2 = 12.6 ft. 

From figure 2 and for d2 = 12.6 ft, read A2 = 2,400 ft2. 

From equation (l), 

Sl,l = Sl,O + 

(A1 + A21 
(L1- Lo) = 0 + ( 2,500 + 2,400jc2,500 

- 0) 
2 2 

1985 

sl,l = 6.1 x lo6 ft3 
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Table 1 .--Discharge-valley storage data for example 1. 

Q 

Sect. 1 Sect. 2 Reach 1 

Qm I ax 

/ cfs / ft2 1 ft2 ft3 

0.25 8,750 2,500 2,400 6.1~10~ 
0.50 17,500 4,200 4,000 10.3x106 

0.75 26,250 5,500 5,300 13.5x106 
1.0 35,000 6,850 6,400 16.6x106 

6. Compute the values of k and m for subreach 1: 

From equations (B-2) and (B-3) and for the paired [Q, S1] data in table 1, 

solve for m and k. 
4 

Since this example uses four pairs of Q and S1 values, 

N = 4 and n = 7 = 2. 

[4 - 2][log 8,750 + log 17,500] - 2[log 26,250 + log 35,000] 
m= 

14 - 2][log 6.1~10~ + log 10.3~10~1 - 2[log 13.5x106 + log 16.6x1061 

m = 1.41 

k= -1 log 8,750 + log 17.500 - 1.41(log 6.1~10~ + log 10.3~10~) 
log [ 2 1 

k= 2.32 x 10 -6 

7. Compute k*: 

From equation (16A) and for QT = Qmax = 35,000 cfs, 

QI k*= - = 35,000 

k Vim 2.32 x 10-6[450(43,560)]"41 

k* = 0.788 
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8. Determine Q* and to*: 

From figure 4 and for [m = 1.41, k* = 0.7881, read: 

Q* = 0.495, t* = 0.91 
0 

Check results by comparison to those from numerical solution: 

From equation (8) and for Q* = 0.495, 

* 
t = 0.912 

0 

From equation (9) and [Q* = 0.495, t:, = 0.9121, 

k* = 0.786 

9. Determine the maximum flood discharge at section 2: 

From equation (14) and [QI = 35,000 cfs, Q* = 0.4951, 

Q, = Q, Q* = 35,000 x 0.495 = 17,000 cfs 

10. Determine maximum depth of flooding at section 2: 

From figure 1 and for Q. = 17,000 cfs, 

do = 16.1 feet 

11. Compute time of occurrence of maximum depth of flooding at section 2: 

"I 450 x 43.560 
- = 35,000 x 3,600 = l 156 hrs 

QI 

t* 
V 

I - = 0.912 x 0.156 = 0.142 hrs = 8.5 min to = 0 Q 
I 
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EXAMPLE2 

Given: I 

Qm ax = 127,000 cfs 

Breach with storm inflow 

Reservoir storage volume before the storm is 2000 ac-ft 

The total volume of the storm runoff is 1000 ac-ft 

The depth of flow versus flow-area curves in figure 2 

The depth of flow versus discharge curves in figure 3, for the three 

valley cross-sections located as follows: 

section 1; at the dam 

section 2; 4,000 feet downstream of dam 

section 3; 15,000 feet downstream of dam 

Determine: 

The maximum depth of flow at section 2 and at section 3 and 

associated times of occurrence. 

Solution: 

The given input data furnishes the information which is normally developed in 

steps 1 through 3 of the solution procedure. So, the solution starts, again, 

with step 4 of the procedure. 

4. Determine the shape of the breach hydrograph: 

a. Determine the depth of flow and the cross-section area at section 1 

for Q, = Q . . . . = 127,000 cfs, assuming the dam does not exist. 

u 

From figure 3 and for section 1, read the depth of flow, 

dl = 20.8 ft. 

From figure 2 and for dl = 20-g ft, read A = 4,650 ft2. 

b. Determine the critical discharge, Q, d, for the depth of flow / 
, 

at section 1, assuming for this example that T = 575 ft, when c 

dl = 20.8 ft, I 
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d 
Q;,d = T = 

~(4650)~ 
575 = 5.62 x 10' ft6/sec2 

Q c,d 
= 75,000 cfs 

Then, 

Q,= 127.000 
Q 75,000 = 1.69 > 1 

c,d 

Thus, flow immediately downstream from the dam is supercritical, and 

the breach hydrograph is triangular. 

5. Determine the flow areas and valley storages at each section for the 

discharge values necessary to define adequately the discharge versus 

valley storage relationship. In this example, discharges of 0.2, 0.4, 

0.6, 0.8, and 1 of Q,,, and associated valley storages are used to define 

the discharge versus valley storage relationship. 

Sample calculations are shown for 0.2 x Qmax (Q, = 25,400 cfs), 

i.e., = i 1. 

a. Section 1, (at the dam); i = 1, j = 0 

From figure 3 and for Q = 25,400 cfs, read dl = 12.1 ft. 

From figure 2 and for dl = 12-l ft, read Al = 1,150 ft2. 

b. Section 2; i = 1, j = 1 

From figure 3 and for Q = 25,400 cfs, read 

From figure 2 and for d2 = 9.1 ft, read A2 

From equation (l), 

d2 = 9.1 ft. 

= 1,400 ft2. 

Sl,l = sl,o + ( 

Al + A 

2 2, (3 - Ll> 

sl,l =O+( l-l50 ; 1400)(4,000 - 0) = 5.1 x lo6 ft3 
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C. Section 3; i = 1, j = 2 

From figure 3 and for Q = 25,400 cfs, read d3 = 7.2 ft. 

From figure 2 and for d3 = 7.2 ft, read A3 = 1,250 ft2. 

From equation (11, 

s1,2 = sl,l + ( 
A2 + A3 

2 > (L3 - L2> 

S1,2 = 5.1 x lo6 + ( ls400 ; 1g250) (15,000 - 4,000) 

s1,2 = 19.7 x lo6 ft3 

Table 2. --Discharge-valley storage data for example 2. 

Q 

Qm ax 

Sect. 1 Sect. 2 Sect. 3 Reach 1 

Q 

A1 A2 A3 

cfs ft2 ft2 ft2 

0.2 25,400 1,150 1,400 1,250 

0.4 50,800 2,350 2,350 2,050 

0.6 76,200 3,250 3,100 2,950 
0.8 101,600 3,950 3,750 3,700 

1.0 127,000 4,650 4,400 4,400 

Reach 1. (j = 1) 

6. Compute values of k and m in reach 1: 

From equations (B-2) and (B-3) and for the paired [Q, Sl ] data in 

s1 

ft3 

5.1x106 19.7x106 

9.4x106 33.6~106 

12.7~10~ 46.0~10~ 

15.4x106 56.4~106 

18.1~10~ 66.5~10~ 

ft3 

table 2, solve for m and k. Since this example uses five sets of 

paired [Q, Sl] data, N = 5, and n = (5 + 1112 = 3. 

i log Qi = log(25,400) + log(50,800) + log(76,200) = 13.993 
i=l 
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1s Qi = log(101,600) + log(127,OOO) = 10.111 
i=n+l 

f 1% Si,l = log(5.1 x 106) + log(9.4 x lob) + log(12.7 x 106) 
i=l 

= 20.785 

i 1% si 1 = log(15.4 x 106) + log(18.1 x 106> = 14.445 
i=n+l , 

Then, 

- 3)(13.993) - 3(10.111) 
- 3)(20.785) - 3(14.445) = 1.33 

E 
k = log-'{ i=l 

log(Q,) - m f log(Si,l) 
i=l 

n I 

- 1.33(20.785) k = log-l{ 130gg3 3 ) = 2.82 x 10 -5 

7. Compute k*: 

From equation (16A) and for QI = Q,,, = 127,000 cfs, 

k* 
QI 127.000 z-z = 0.072 

k V; 2.82 x 10-5[(2000 + 1000)(43,560)1 
1.33 

* * 
8. Determine Q and to: 

From Figure 6 and [m = 1.33, k* = 0.0721, 

Q* = 0.89, t*, = 0.22 

9. Compute the maximum flood discharge at section 2: s 

From equation (14) and for [QI = 127,000 cfs, Q* = 0.891 

Q, = 127,000 x 0.89 = 113,000 cfs 

10. Determine maximum depth of flooding at section 2: 

From figure 3 and for Q. = 113,000 cfs, do = 16.3 feet. 
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11. Compute time of maximum depth of flooding at section 2: 

"1 to= t; - 
3000x43 560 

Q, 
= 0.22 ( 127,0ho ) = 230 set = 3.8 min 

Reach 2. (j = 2) 

6. Compute values of k and m for reach 2: x 
From equations (B-2) and (B-3) and for the [Q, S2] data in table 2, solve 

for m and k. m 

m = 1.34 

k = 4.18 x lo+ 

7. Compute k*: 

From equation (16A) and for QI = 127,000 cfs, 

k* QI z-z 127.000 = -6 0.403 
k V; 4.18 x 10 [131 10 

6 
1 
1.34 

x 
* 

8. Determine Q* and to: 

From figure 6 and [m = 1.34, k* = 0.4031, 

Q* = 0.719, t* = 0.63 
0 

9. Compute maximum flood discharge at section 3: 
From equation (14) and for [Q, = 127,000 cfs, Q* = 0.7191, 

QO = 127,000 x 0.719 = 91,300 cfs 

10. Determine maximum depth of flooding at section 3: 

From figure 3 and for Q. = 91,300 cfs, do = 14.2 feet. 

11. Compute time of maximum depth at section 3: 

* “I to= to - = 
o 63 131 x lo6 

. = 650 set = 10.8 min 

QI 127,000 
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EXAMPLE3 

Given: 

Q max = 200,000 cfs 

Reservoir storage volume is 8000 ac-ft 
No storm inflow 

The shape of the breach hydrograph is curvilinear 
The discharge versus valley storage relationship in the valley reach 

between the dam and section 5 is represented by the equation: 

Q = 0.976 x 10 -16 S2.5 

i.e., k = 0.976 x 10 -16 
and m = 2.5 

Determine: 

The maximum discharge at section 5. 

Solution: 

The values of k and m are given so the solution starts with procedure 

step 7. 

7. Compute k*: 

From equation (16A) 

k* Q1 200.000 z-z 
k Vim 0.976 x 10 -" [8000(43,560)]2*5 

= 0.904 

8. Determine Q*: 
From figure 4 and [m = 2.5, k" = 0.904 ,I, 

Q* = 0.36 

9. Compute the maximum flood discharge at section 5: 
From equation (14) and for IQ, = 200,000 cfs, Q* +I.36], 

Qo = 200,000 x 0.36 = 72,000 cfs 
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APPENDIX A 

THE ATT-KIN FLOOD ROUTING FlETHOD 

Introduction 

From the hydraulics point of view, flood routing is a special case of unsteady 

flow in open channels. In most instances, the flow is treated as one- 

dimensional which implies that spatial variation of physical quantities such 

as discharges, velocities, and flow depths is significant only along the 

direction of flow. Consequently, the mathematical model simulating prototype 

behavior consists only of two partial differential equations; namely, the 

continuity equation describing the principle of conservation of mass and the 

equatiorof motion describing the principle of conservation of momentum in the 

direction of the flow. 

In the general case of nonprismatic channels, the two equations known as the 

Saint-Venant equations assume the form: 

(A-1) 

(A-2 > 

in which, 

Q - discharge at point {x,t } on the x, t plane 
A E valley cross-section at the same point 

d E flow depth associated with Q and A 

Sg : longitudinal gradient of valley floor 

Sf - friction gradient at point {x,t ) 
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Added to the above two are the three auxiliary relationships: 

d 3 flW 

r E f2(A) 

Sf 3 f3(Q,A,r,d 

in which, 

r : hydraulic radius of the flow section 

n Z roughness coefficient in Manning's equation 

(A-3) 

(A-4) 

(A-5) 

Relationships (A-3) and (A-4) are developed from geometric data included in 

the input vector. The appearance of Manning's n in the right-hand side of 

equation (A-5) does not mandate exclusive use of Manning's formula; any 

reputable friction formula is acceptable. 

The simultaneous solution of the above two partial differential equations 

together with the three auxiliary ones produces paired values of the two 

dependent variables Q and A as discrete functions of the independent variables 

x and t, as well as, of the predefined fixed variables S f and n. In 

mathematical jargon, the solution describes the response of the system to the 

outside stimuli and constraints stipulated by the boundary conditions. 

HYDRAULIC FLOOD ROUTING 

The definition of the term refers.to situations satisfying the following 

requirements with regard to boundary conditions and method of solution: 

There are at least two independent boundary conditions; one of them is the 

flood hydrograph applied at the upstream end of the simple linear channel 

system considered here, and the other defines the flood flow area A as a 

function of time or discharge Q. The second boundary condition applies at 

the upstream end valley cross-section, if the flow is supercritical, and 

at the downstream end section of the system when the flow is subcritical. 

Equation (A-2) may be simplified through the elimination of negligible 
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terms, but it has to be solved simultaneously with equation (A-l). The 

solution of the mathematical model is, in other words, "coupled." 

The distinct characteristic of hydraulic routing is reflected in the 

associated problem statement which is as follows: 

Given the state of the system at time t, i.e., all fixed or dependent 

variables defined along the entire length of the channel, determine 
the state of the system for time t +At. 

. 

Because of the way the solution proceeds, it is said to be "marching forward 

with time." In the process, the solution produces at the end of each time 
interval instantaneous profiles of discharge and flow area or of corresponding 

depth of flow, flow stage, and water surface elevation along the entire length 
of the reach. The supporting data is stored and used at the completion of 

computations to construct routed hydrographs and histograms of stage, flow 
area, or water surface elevation at any internal or boundary valley cross- 

section. It is evident that the prerequisite for starting the solution is the 
specification of two initial conditions; that is, profiles of stage or water 

surface elevation and discharge at time zero along the entire length of the 
reach. 

HYDROLOGIC FLOOD ROUTING 

The preceding brief outline of concepts underlying hydraulic flood routing can 

serve as the framework for comparing and discussing the class of hydrologic 
flood routing methods, of which the Att-Kin method is a member. 

The characteristic features of the methods in the hydrologic class are: 

1. The first boundary condition is the same as for the hydraulic class. 

But, while previously, the application of the predefined single-valued 
relationship between Q and A was restricted only to the end cross- 
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sections; in the hydrologic class, it is completely unrestricted. Thus, 

there are as many such relationships as there are valley cross-sections. 

2. The solution starts at the upstream end of the channel with the inflow 

hydrograph as the boundary condition and advances frontally in the 

direction of the flow. Thus, in contrast to the hydraulic routing 

scheme, the solution "marches forward with distance." In the 

conventional procedure, the total valley reach is divided, arbitrarily or 

as dictated by the pertinent input data, into a number of subreaches. 

Each subreach, beginning with the most upstream, is dealt with completely 

before proceeding with the solution of the flood routing problem in the 

subreach immediately downstream. The mathematical model is solved 

repeatedly at predefined time intervals for each subreach, generating the 

necessary data for the complete definition of the outflow hydrograph from 

the subreach. This hydrograph is used at the beginning of the next 

computational cycle as the inflow hydrograph to the subreach immediately 

downstream. 

The problem statement of hydrologic flood routing methods is: 

Given the complete hydrograph at valley section j, construct the 

hydrograph at section j+l. 

3. The continuity equation (A-l) may be used as is or in the integral form, 

s2 = s1 + ( tj2- a,, At (A-6) 

in which, 

S 1 E valley storage at time t 
1 

S2 : valley storage at time t2 = tI + At 

ql 3 average outflow from the reach 
during the time interval At = t2 - t1 

q2 5 average inflow into the reach 
during the time interval At = t2 - tI 

4. The equation of motion (A-2) is simplified through elimination of the 

first term, the first and the second, or all three terms on the left- 

hand side of the equation. Elimination of the first term is mandatory 

and of the other two, optional. The simplification not only reduces the 
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complexity of the partial differential equation in time and space but 

also transforms it into an ordinary differential equation in space 

only. Then, the simplified equation can be integrated along the 

direction of flow independently of the continuity equation (A-6). 

Integrating of the equation along the direction of flow allows for the 

development of the discharge versus flow area relationships through 

conventional steady-state water surface profile techniques. 

So, in brief, simplification of the equation of motion (A-2) is allowed 

in all methods, regardless of class. Yet, whereas for methods in the 

hydraulic class, the elimination of the term aQ/at is optional; for those 

in the hydrologic class, it is mandatory. Integration of the simplified 

equation (A-2) is mandatory, whereas, for those in the hydraulic class, 

it is forbidden. Because of the way the associated mathematical models 

are integrated, the solutions of the hydrologic methods are called 

"uncoupled." 

5. Results from independent integration of the reduced equation (A-2), 

which, in essence, are data generated from steady-state water surface 

profile computations, are used next to develop single-valued 

relationships between discharge and associated valley-storage or 

associated local hydraulic parameters, such as valley cross-section, 

stage, and water surface elevation. 

Typical discharge-storage and discharge-flow area relationships are: 

Q=kSm (A-7) 

Q = k, A" (A-8) 

Hydrologic flood routing models are formed by combining equation (A-l) or 

equation (A-6) with either equation (A-7) or (A-8). 

6. Generally, no attempt is made by hydrologic flood routing methods, 

although the necessary data is available, to test whether or not the 

instantaneous water surface profiles produced by the solution satisfy the 

second equation of their model. 
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7. The built-in stability of the hydrologic flood routing models renders 

their solutions immune to hazards created by extraordinary boundary or 

initial conditions that often prove fatal to hydraulic routing models. 

Specifically, most hydrologic models are capable of admitting inflow 

hydrographs exhibiting instantaneous rises and of handling initial 
conditions of any type, including the dry-bed one. 

HYDROLOGIC FLOOD ROUTING METHODS 

Hydrologic routing methods can be identified further by subclass according to 

formulation of their mathematical model. The two most distinct groups, in 
that respect, are the subclasses of "storage" routing methods and of 

"kinematic" routing methods. Salient features of the two groups are discussed 
below. 

"Storage" flood routing methods are hydrologic flood routing methods in whose 

mathematical models continuity is represented by equation (A-6) and the 
equation of motion is represented by equation (A-7). 

A typical formulation of mathematical models in the subclass is, 

Q = ks sms 
and since 

Ql.l+ Ql.2 Q= 2 

s2 + Q1;2 At 
Q 

= sl+ (T2- 'j') At (A-9) , 

Equation (A-9) is solved simultaneously with equation (A-7A). Solving the 

system of the two equations can be done numerically using a tabular form or 
semi-graphically using reference graphs. 

The postulate in most storage flood routing methods is that the coeffi- 

cient and the exponent in equation (A-7A) are the same as those in equation 
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(2). Consequently, their values can be determined by methods similar to the 

one described in Appendix B. 

"Kinematic" routing methods are hydrologic flood routing methods whose models 

express continuity by equation (A-l) and dynamic equilibrium by 

equation (A-8). 

The typical mathematical model of the subclass is, 

Q=koAm (A-8) 

.Application of the chain differentiation rule on equation (A-l), yields, 

aQ aA aQ aA aQ mm= 
iT+at=K+aQat O 

(A-10) 

Also, by setting the total differential of Q equal to zero, we get 
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aQ E? dQ =ax dx +at dt = 0 

Eliminating the terms 2 and 2 between equations (A-10) and (A-11), and 

completing the algebra results in, 

dx aQ 
dt=aA (A-12) 

The mathematical interpretatiqn of equations (A-11) and (A-12) is that the 

value of the characteristic function Q remains constant along the 

characteristic line whose differential equation on the x, t plane is equation 

(A-12). The corresponding hydraulic interpretation is that during the time 

interval At th.e instantaneous discharge through any channel section will be 

translated without change to another section located at a distance Ax 

downstream, such that, 

Ax =$fAt =EAt 
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From which, the speed of travel of discharge Q is defined as 

dx aQ 
C = dt=aA 

The quasi-steady formulation resulting in equation (A-g) allows substituting 

total derivatives for partial ones. 

Hence, 

C =~=~=, kArn-lzrnA 
aA dA A =mV (A-13) 

V E average flow velocity through cross-section j at the 

beginning of time interval At. 

The problem statement in kinematic flood routing is: 

Given: The profile of discharge in the reach between cross- 

sections 2 and 1 at time tl, and the relationship, 

Q = koAm 

Find: The outflow discharge Q1,2 from the reach at time t2. 

The concept underlying the kinematic approach is that at time tl, there is a 

discharge Qi through section 3, located between sections 1 and 2, moving 

downstream at a speed of dQ/dA = tan 0. Then, during the time interval 

t2 - tl' the discharge Qi will travel the distance between sections 3 and 

1 to become the outflow discharge Q, 2 at time t2. The sketches below 
, 

illustrate the concept. 

The curve in sketch (a) represents the relationship between the discharge and 

flow area at section 3 in the reach, located at distance CxL, 0 < C < 1, 

upstream from section 1. 

Sketch (b) shows segments of the inflow and outflow hydrographs, i.e., 

at sections 2 and 1, respectively. The former is defined for all times and 

the latter to time tl* 
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Finally, the curve on sketch (c) simulates the assumed known discharge profile 

in the reach at time tl. 

So, the only thing one has to do is, 

assume a value of C 

compute the distance CxL 

find from the profile on sketch (c) the associated discharge 

determine the angle 9 from sketch (a) 

set c = tan 9, and check whether or not c = 
CXL 

t2- 5 

The main difficulty in practice is with defining adequately the curve on 

sketch (c) at time tip and to a lesser degree, the curve on sketch (a). 

THE ATT-KIN METHOD 

The Att-Kin method is a hydrologic flood routing method differing from the 

norm in the following two major aspects: 

In contrast to the conventional arrangements of valley subreaches in series, 

the subreaches in the Att-Kin method are arranged, so to speak, in parallel. 

In other words, each subreach begins at the first valley cross-section 

upstream and ends at some other cross-section downstream. So, the same flood 

hydrograph is routed independently through each subreach and, if so desired, 

in arbitrary order. 
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In contrast to the conventional treatment of the storage and kinematic flood 

routing submodels as mutually exclusive, the Att-Kin method, on the strength 
of the observation that neither submodel is able to account fully for the 

required valley storage, uses both submodels. Specifically, it uses the 
storage routing submodel to determine the part of valley storage in the 

subreach required for attenuation of the peak and the kinematic submodel to 
determine the part of the valley storage associated with the transformation 

imposed upon the outflow hydrograph Ql(t) by the kinematic nature of the flood 

wave. 

THE ATT-KIN MATHEMATICAL MODEL 

The storage submodel consists of the conventional two equations mentioned in 

page A-6. These are: 

Q = k, sms (A-7A) 

S2 + Q1*2 At = Sl + cc,- "") At 
2 2 

(A-9) 

Solution of the submodel for a given inflow hydrograph produces the following 
data : 

Q, E peak outflow 
Vs G associated valley storage 

5 
: time of occurrence of Q, 

and 

Q,(t) G storage routed hydrograph 

The transformation of the outflow hydrograph Ql(t) consists of a relative 

distortion and a pure translation, both with respect to time. The associated 

volumes are determined through application of the concept of kinematic routing 
described in item "Kinematic" routing methods, pages A-7 and A-8. 

The distortion of the hydrograph is caused by the fact that large discharges 

travel at a different speed than smaller ones, as indicated by equations (A-8) 
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and (A-9). Consequently, the time required for the former to travel the 

distance L, the length of the reach, will be different than for the latter. 

According to equation (A-13), the speed of travel of a discharge Q = q,(t) 

iSC=$ In nonuniform flows, the speed 3 dA is meaningless when the symbol 
A denotes the flow area associated with Q at a particular cross-section of the 

subreach, as implied by equation (A-8). The logical area, in this case, is 
the mean flow area in the subreach, defined as, 

1L A=- 
L J Adx 

0 

Then, equation (A-13) becomes, 

c=dQ=iw 
dA dS dA 

(A-14) 

(A-14A) 

and since, by definition, 

S = ,r( Adx (A-15) 

eliminating the integrals on the right-hand sides of equations (A-14) and 

(A-15) results in S = x L , from which 

dS=L 
dSi 

and 
dQ dS 

c = -- =LdQ 
dS d;i 

(A-16) 
dS 

Associated with the speed of travel c of the discharge Q is a time of travel 

% such that 

from which 
L dS 

tl= ; = dQ 

For the peak discharge Q, 

dSO 

tl,O= zj- 
0 

(A-17) 
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so, by definition, 

dS dS 
6t = t1- t1 o =x--O (A-18) 

, 
0 

6t E kinematic distortion of the outflow hydrograph associated 

with the discharge Q = Q,(t) relative to the distortion 

of the peak outflow discharge Qo* 

The variables Q, and So are related to each other through equation (A-7) 

which solved for So becomes, 

Qo $ so = e-p (A-18A) 

sO 
Z valley storage in the reach associated with peak outflow Q . 

0 

The associated infinitesimal volume resulting from the distortion of an 

increment of discharge dQ is, 

dS dS 

dVd = 6t dQ = [do -$] dQ 
0 

from which 

Q dS dS 
vd =,."[,,-$-I dQ 

0 

(A-19) 

vd F valley storage attributed to kinematic distortion. 

Integration of the right-hand side of equation (A-19) by parts gives, 

,o E dQ = lI"dS = So 

and from equation (A-18A), 

Qo dSo dSo Qo dSO sO 

I o QdQ=dq~odQ=~QO=~ 
0 0 0 

Hence, 

Vd = So(l -+ 
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t 

t 

The pure translation of the outflow hydrograph is equal, by definition, to the 

translation of the peak outflow Q,. It may be explained, physically, as the 

time lapse between the occurrence of the peak inflow at the upstream end of 

the reach and the occurrence of the peak outflow at the downstream end. Then, 

according to the kinematic concept, 
dS 

in which 

to E time to peak outflow Q, 

t1 - time to peak inflow QI 

In the expression above, Q varies between Q, and 9, and S between So and SI. 

For the evaluation of the term dS/dQ, the Att-Kin method uses the 

approximation below, 

sI - so g = qT-z-n- 
0 

which is considered adequate for the purpose. Thus, the expression for 

the time to peak outflow becomes, 
S - s 

t 0 

0 
=tl+ I (A-21) 

QI - Qo 
SI E valley storage associated with Q, from equation (A-7). 

Then, 

Vi = ,t Q2(t)dt = ,I' Q2(t)dt +/I0 Q2(t)dt 
S 

Vi E total volume of inflow into the reach from time zero to time to. 

The volume represented by the first integral on the right-hand side of the 

equation above is equal to the sum of three volumes; the valley storage 

associated with Q, and determined by the storage routing sub-model, the part 

of valley storage attributed to the distortion of the outflow hydrograph, and 

the net volume of outflow from the reach during the time interval between zero 

and t 
0. Thus, 
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/;‘Qz(t)dt = vs+ vd+ v. 

Vo E net volume of outflow from the reach to time t 
0. 

Letting, 
t 

Vt = I,” Q2(t)dt 
S 

vi s ='+'d+'+' 0 t 
Hence, 

sn = Vi - v 
0 

= vs + Vd + v 
t 

(A-22) 

(A-22A) 
Sn E net valley storage in the reach at time to 

The key argument in the Att-Kin method is that the net storage as determined 

by equation (A-22A) is equal to the valley storage computed from equation 
(A-18A). In other words, 

S = s 
0 n ='+'d+' S t 

In summary, the mathematical model of the Att-Kin method consists of the 

following ten equations: 

Q Q 
sl,i+ 'ii At = Sl i-1 + (6, i- 

, , 
'*;-l) At 

Q,(t) = ksSms 

m 
QO = Q,(ts) = ks V ' 

S 

ts =c At 

Qo=kSm 
0 

QI =kSm I 

'd = So(l -+, 

t = t1 + 
sI - so 

0 QI - Qo 

t 

Vt = ,;” Q2(t)dt 
S 

(A-23) 

(A-24) 

(A-25) 

(A-26) 

(A-27) 

(~-28) 

(A-29) 

(A-30) 

(A-31) 
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so = vs + Vd + Vt 

A-15 

(A-32) 

t 

t 

0 

The variables and their number in the above equations are: 

Equation 

(A-23) 

(A-24) 

(A-25) 

(A-27) 

(A-28) 

(A-29) 

(A-30) 

(A-31) 

sl, Q,, At, Q, 4 

ks’ ms 2 

Qo’ ts’ vs 3 

k, m, So 3 

Qr’ ‘I 2 

'd 1 

to’ 5 2 

Vt 1 

for a total number of 18 

The predetermined variables are the following six: 

Q,9 Q,, tI, At, k, and m. 

It appears that the system of the Att-Kin mathematical model consisting of ten 

independent equations containing eighteen variables, of which six variables 

are treated as independent, is two equations short of consistent. Actually, 

the system is only one equation short because of the relationship between k 

and ks resulting from elimination of Q. between equations (A-25) and (A-27). 

The problem of the missing equation is resolved in the Att-Kin method by 

assuming 

m 
S =m 

Then, the relationship between k and k, mentioned earlier becomes, 

Consequently, equation (A-24) becomes, 

Q1 = k (7 
'0 lmSm 

S 

(A-33) 

Equations (A-23) and (A-33) are the components of the storage routing submodel 

used by the Att-Kin method. 
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PROBLEM STATEMENT AND SOLUTION PROCEDURE 

Given the input data set: 

Inflow hydrograph data { t, Q,(t) 1, QI, tI 

the computational time interval At 

and the values of k and m, 

Find: 

(a). The peak outflow Q and the time to peak t . 

(b). A set of paired values [ Ql, 
0 

t ] of the outflow hydrograph. 

Solution Procedure: 

(a). Setting, 

“S c =- ,O<C<l 

equation (A-33) becomes, 

(A-34) 

Because of its structure, the Att-Kin mathematical model does not afford a 

direct solution. The procedure for solving the model indirectly by means of 

an iterative technique about the value of the coefficient C is given below. 

1. Assume a value of C. Due to the constraint imposed by equations 

(A-29) and (A-32), the selected value of C must satisfy the condition, 

(Vs + Vd) < s 
0 or 

(1 -i+c)<l 

Thus, the selected value of C must be equal to or smaller than i . 

In the event C = l/m, So = Vs + Vd. Then, from equation (A-32), 

"t = 0, and, from equation (A-31), t = t . The physical interpre- 
0 S 

tation of t = ts 
0 

is that the storage routed flood hydrograph will be 

attenuated and distorted with time, but not translated. 
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c 

t 

2. Perform storage routing computations using equations (A-23) and (A-34) 

to determine Q V ts, and the array { Q 0' s' 1' 4. 

3. Compute So from equation (A-27) solved for So, using given values of k and 

m, and the value of Q, from step 2* 

4. Compute Vd from equation (A-29) using given value of m and the value of S 
0 

from step 3. 

5. Compute ST from equation (A-28) solved for ST' using input values of m, k, 

and Q,. 

6. Compute to from equation (A-30) using input values of tI and Q,, and known 

values of Q,, So, and ST from steps 2, 3, and 5, respectively. 

7. Compute Vt from equation (A-31) using input values of Q,(t) and known 

values of t 
S 

and to from steps 2 and 6, respectively. 

8. Compute So from equation (A-32) using known values of V , V 
s d' 

and V 
t' 

from 

steps 2, 4, and 7, respectively. 

9. If value of S, from step 8 is close to the value of So from step 3, go to 

step 11. 

10. Modify C, enter the new value in equation (A-34), and return to step 2. 

11. The sought for values of Q. and to are those from steps 2 and 6, 

respectively. 

(b). 

The procedure below determines the displacement with time of a point on the 

storage routed flood hydrograph whose coordinates on the Q, t plane determined 

in part (a) of the solution are Ql,i, tl,i* 

This part of the solution procedure uses the basic relationship between valley 

storage in the reach and outflow discharge represented by equation (A-7) 

solved for S. i.e., 
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1 - 

S = (+)" (A-35) 

Through the substitution of S1 i for S, and of Q, i for Q, equation (A-35) 
, 3 

becomes, 

Hence, 

1 
--l 

l/m QY,i 

Similarly, using equation (A-27) and the parameters So and Qo, results in, 

fL= 1 
1 -1 

dQ l/m Q: 
0 mk 

1. Use input values of k and m, the value of Q, determined in part (a), and 

the selected outflow discharge Q1 i 
, in equation (A-18), to compute, 

dSl,i dSo 
1 1 1-l -- 

6t = dQ 

1 

l,i 
-dQ= 

0 m k" 
m(Q;,i -St ) 

6t E time displacement of discharge QI,~ due to kinematic 

distortion. 

2. Use the values of t, and to from steps 2(a) and 6(a), respectively, in the 

definition below to compute 6to 

6t = t -t 
0 S 

time displacement of discharge Q, i due to kinematic 
, 

translation. 

3. Compute the total kinematic time lag of discharge Q1 i from, 
, 

% i. , 
= 6ti + 6t 

0 

The time lag of a discharge is the same for the rising and falling limb of 

the storage .routed hydrograph. 
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4. Determine the time coordinate of the Att-Kin routed discharge Q, i from, 
, 

?,i + Y,i 

The procedure is repeated as many times as needed with different values of Q, 

where 0 < Q < Q 
0. 

Since the pure translation, &to, is the same for all 

points of the hydrograph, step 2(b) may be omitted in all computational cycles 
after the first one. 

The sketch below serves the dual purpose of defining symbols and of describing 
visually the unique features of flood routing by the Att-Kin method. 
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APPENDIX B 

Determination of exponent m and coefficient k in 

valley reach j by the "method of averages"; 
(Smith and Gale 1956) 

The procedure used by the method to determine m and k consists of the 

following steps: 

1. Substitute pair-d Q, Sj data into equation (3), appearing below as 

equation (B-l), to obtain the same number of equations as there are 

pairs of such data. 

log Qi = log k + m log S 
W 

(B-1) 

2. Divide the resulting equations into two groups, with each group 

having as nearly as possible the same number of equations. 

3. Compute the following partial sums of the terms on the left- and 

right-hand sides of the equations in the two groups: 

i 
i=l 

lois Qi 

f lj log s. 
i=l , 

i 
i=n+l 

log Q, 

i lj log s. 
i=n+l , 

in which: 

N : number of paired Qi, Si j data 
, 

N N+l 
n Z - 2 when N is even, and 2 when N is odd 

Qi z outflow discharge in cfs 
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s. l,j E valley storage in ft3 associated with discharge Qi in 

reach j; i.e., the valley reach between sections 1 and j+l. 

4. Compute the values of m and k from equations (B-2) and (B-3), 

respectively: 

N 
[N - nl f 

i=l 
log Qi - n 1 log Qi 

i=n+l 
m= n N (B-2) -. 

[N - nl 1 logs -nC log S. 
i=l Lj i=n+l bj 

k = log-' [ i=l 
log Q, - m 

n (B-3) 
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